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A theory is given of dynamical effects arising from configurational instability of the Jahn-Teller type 
due to electronic degeneracy in solid-state impurities or in molecules. The model assumes a bilinear inter­
action coupling one pair of degenerate electronic states to n pairs of degenerate normal coordinates of 
lattice vibration in a system possessing a threefold symmetry axis. It is shown that in the strong-coupling 
approximation two modes of collective motion may be distinguished. In the first mode, the collective 
energy is small, the collective motion is stabilized by elastic restoring forces, and one angular collective 
coordinate is separable. In the second mode of collective motion, the collective energy is large, the motion 
is stabilized by pseudocentrifugal forces, and an additional, pseudoradial collective coordinate is approxi­
mately separable. Approximate formulas are given for the energy levels and widths of the second mode. It 
is suggested that these levels might be observable in solids with appropriate impurities or in molecules. 

I. INTRODUCTION 

TH E general conditions under which a molecular 
configuration can be stable were investigated by 

Jahn and Teller.1'2 They, at first, neglected all spin 
effects and found that if the electronic state is de­
generate, then the nuclear configuration is unstable 
with respect to small displacements, unless all the 
nuclei lie on a straight line.1 Later, Jahn extended the 
analysis to consider spin-dependent forces.2 We will not 
consider spin-dependent forces in this article. 

The problem of finding the stable, distorted con­
figuration in cases to which the spinless form of the 
Jahn-Teller theorem applies has been treated.3"6 Also, 
it has been recognized that the destabilizing forces lead 
to anharmonic motion of the nuclei which is intimately 
correlated with the electronic motion.7,8 Explicit 
solutions of the dynamic problem for arbitrary strength 
of coupling have only been given for the case of one pair 
of degenerate vibrational modes.9,10 A theory of the 
vibronic spectra of electronically degenerate molecules 
has been based on one of these solutions.11 The effect 
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(1958). 
6 Discussions of many molecular symmetries and a large 

bibliography covering many aspects of the Jahn-Teller effect are 
given by A. D. Liehr, J. Phys. Chem. 67, 389 and 471 (1963). 

7 W. Moffitt and A. D. Liehr, Phys. Rev. 106, 1195 (1957). 
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R. Daudel (Centre National de la Recherche Scientifique, Paris, 
1958), p. 141. 
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nology, 1962 (unpublished), pp. 158 and 163. 
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of strong vibronic coupling on rotational levels in simple 
dihedral molecules has been studied as well.12 

The dynamical problem involving an arbitrary 
number of vibrational modes has been treated only in 
the weak-coupling limit, in which the forces tending 
to produce the distortion are considered to perturb 
slightly the vibrational levels.13 The object of the present 
article is to provide a method of treating the dynamic 
problem involving an arbitrary number of nuclear 
coordinates with strong coupling. The principal appli­
cation in mind is to impurity states in solids, particu­
larly those of transition metal ions.3-5 However, few 
assumptions of special kinds are made so that the 
results may be of interest in application to other types 
of impurities and to molecules with more than one pair 
of interacting vibrational modes as well. Since the 
model Hamiltonian used is analogous to elementary 
models of the pion-nucleon interaction, our results may 
be of interest in that field as well.14 

The initial transformation of the nuclear normal 
vibrational coordinates, which forms the starting point 
of the present investigation, is introduced in analogy 
to the transformation of nuclear position coordinates 
used by Wilson and Howard15,16 in the theory of 
vibration and rotation of molecules. The expressions it 
leads to in our problem resemble strongly those appear­
ing in the strong-coupling theory of the pion-nucleon 
interaction.14 However, details of the relationship 
between the two problems are beyond the scope of this 
article. 

The main result of the paper is to show the existence 
of a class of unusual quasistationary excited states. 
These states involve a collective motion of electrons 

12 M. S. Child, Mol. Phys. 5, 391 (1962). 
13 W. Moffitt and W. Thorson, Phys. Rev. 108, 1251 (1957). 
14 H. Jahn, Phys. Rev. 124, 280 (1961). See this article for 

references to earlier literature. 
15 E. B. Wilson, Jr., and J. B. Howard, J. Chem. Phys. 4, 262 

(1936). 
16 H. H. Nielsen, in Handbuch der Physik, edited by S. Fliigge, 

(Springer-Verlag, Berlin, 1959), Vol. 37, Atome Ill-Molecule I, 
Chap. 1, p. 1. 
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and nuclei in which the instantaneous distortion of 
nuclear configuration is opposite in sense to the static 
distortion appropriate to the instantaneous electronic 
state. The Jahn-Teller distortional forces are balanced 
by pseudocentrifugal forces, rather than the elastic 
forces which are effective near static equilibrium. These 
highly excited states, which we call centrifugaily 
stabilized, owe their quasistability to the fact that the 
frequency of the motion lies well above the maximum 
vibrational frequency. I t is, therefore, not possible for 
the vibrational modes to absorb energy from the 
collective motion except by means of high-order 
processes. 

A reasonable criterion for the existence of a quasi-
stationary state is that the width of a level, as deter­
mined by its lifetime, be less than the interval between 
adjacent levels. On the basis of this criterion it appears 
that the condition for the existence of centrifugally 
stabilized states in systems of the appropriate symmetry 
is, roughly, that the static stabilization energy be 
greater than a typical vibrational quantum. Since this 
is also the condition for applicability of the strong-
coupling approximation, the existence of centrifugally 
stabilized states may be regarded as a consequence of 
strong coupling. We expect, then, that such states 
exist in certain ligated transition-metal ions which are 
known to satisfy the strong-coupling condition, although 
the question of the method of their observation is 
beyond the scope of the present article. 

In Sec. I I we derive the model Hamiltonian. In 
Sec. I l l we introduce the first of two transformations 
which separates a collective angular coordinate and 
leads to a Hamiltonian form appropriate to states near 
static equilibrium. In Sec. IV we introduce a second 
transformation which approximately separates an 
additional, radial, collective coordinate, and which leads 
to a Hamiltonian form appropriate to centrifugally 
stabilized states. This section concludes with a quali­
tative description of the principal modes of collective 
motion. In Sec. V we derive approximate expressions for 
centrifugally stabilized energy levels and widths, and 
estimate their numerical values. 

II. MODEL HAMILTONIAN 

We derive here a model Hamiltonian which is a 
straightforward generalization to the case of n pairs of 
interacting vibrational modes of the Hamiltonian used 
to treat a single pair of such modes.9-11 We consider a 
crystal which in zero-order approximation has a set of 
N normal coordinates Qi of lattice vibration. The lattice 
Hamiltonian has the form, 

H i = i £ (P?+MQ**)> (2.1) 

where Pi is canonically conjugate to Qi, and fa is the 
circular frequency of oscillation. In application to 
molecules we neglect true rotational motion, 

In addition, we assume that one atom in the molecule 
or one impurity in the crystal has a localized electronic 
state such as a partially filled 3d shell of a transition 
metal ion. We assume that, in zero-order approximation, 
the localized electrons are not coupled to the nuclear 
coordinates. Therefore, the electron term He(xhX2- • *x,; 
Pi>p2 * • • Pr,) in the Hamiltonian depends on the electron 
coordinates x§ and momenta ps(5= 1, 2* • -77) but not on 
Qi or Pi. 

Finally, we assume a coupling potential V[xiyx2' • «x,; 
QUQZ'"'QN~] which arises from the Coulomb inter­
action between electron and nuclear positions. The 
total Hamiltonian H is the sum of these terms, 

H=Hi+He+V. (2.2) 

To construct the simplest possible nontrivial model 
of the dynamical Jahn-Teller effect we assume the 
existence of a pair, Xx and X2, of normalized degenerate 
electronic states, 

HjL^Efc* ( a = l , 2). (2.3) 

Here E 0 may or may not be the lowest eigenvalue of 
He. In any case we will, as an approximation, confine 
the electron space to this pair of states and write the 
total wave function >£" in the form, 

* = E X«(xi,x2, • • - x , M / ( & , & , • •. QN,() , (2.4) 
a=l,2 

where / is time. Thus, we regard Xx and X2 as given and 
the two-component wave function {^1^//} to be 
determined by Schrodinger's equation. (We have 
affixed primes to \j/i and ^ 2 ' because this definition of 
the two-component wave function will be superseded by 
a better one later.) Spin-dependent effects such as 
spin-orbit coupling are neglected and any possible spin 
degeneracy is superimposed on the states considered 
here. The normalization condition is 

/"•' • J{W*ti+M*M)dQv • -dQN=l. (2.4a) 

The explicit form of the Hamiltonian depends on the 
crystal field symmetry assumed. We specialize to crystal 
fields having an axis of threefold symmetry. I t is well 
known that in this case complex Xa and Q/ [which are 
combinations of degenerate Qj appearing in (2.1)] may 
be found which satisfy 

6VCa=exp(2iriva/3)Xa (va=0, ± 1 ) , (2.5) 

CR<2/=exp(27rW3)e/ ( p y = 0 , ± l ) , (2.6) 

where (R is a rotation of the coordinate system for 
electronic and nuclear positions through an angle 2x/3 
about the assumed axis. 

In the present case He is a real differential operator 
in x«. Therefore, if Xa is an eigenfunction, so is Xa* 
(* means complex conjugate) with the same energy and 
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satisfying (RX«*=exp(— 2wiva/3)Xc*. I t follows that, 
barring accidental degeneracy of states with ^ i = ^ 2 = 0 , 
we may let vi~ 1 and v2= — 1 so that 

X1*^Xi. (2.7) 

The Q/'s we can classify into Qk>o for p&'o=0 and pairs 
Qk± for which pjy.= dbl, and which satisfy 

e*'o*=e*'o, Qk+*=Qk- (2.8) 

We take for "0 the linear terms of a series expansion, 

where Vwo, Vk+, and 'Ufc- are functions of Xi, x2, • • -x„. 
Since V is real, we have 

•0*'o* = 1)*'o, •0JN.* = 'U*-. (2.10) 

Since "0 is invariant under (R, the quantities Vk'o and 
DA^ transform under (R just like the corresponding QA/O 
and £**. 

We proceed to calculate the matrix elements of V 
in the basis Xi, X2. By applying the operations (R and 
Hermitian conjugate in turn to the elements (Xa,Vk'QXp) 
and (Xa,Vh±Xp) we find relationships which reduce the 
representation of V to the form 

(x1,«ux1)= (x2 ,m2)-E/c #*'(?*'0, (2.11) 

where i ^ is a complex constant and Bw is a real 
constant. The phase factor of A k may be absorbed into 
the definition of Qk±, leaving Ak real and positive. I t 
will be useful to write the so redefined Qk± in the form, 

Qk±=Qk±iSk, (2.12) 

where the new normal coordinates Qk and Sk are real. 
Also Bh' may be eliminated by redefining the origin of 
Qk'Q. Assuming that these transformations have been 
made, the model Hamiltonian takes the form, 

0 Qk+iSk 

^»i \Qk~iSk 0 
+iiAk( (2.13) 

where 1 is a unit matrix, where Ak is now real positive, 
where Pk and Rk are momenta conjugate to Qk and Sk, 
respectively, and where the modes Qk'o have been 
omitted because they do not couple to the electron 
motion. 

In deriving Eq. (2.13) we have assumed the simplest 
crystal-field symmetry of threefold axis and time 
reversal because this is the most general (lowest order) 
which insures the existence of double degeneracies. I t 
follows that the same Hamiltonian applies to certain 
crystal-field symmetries, such as trigonal, cubic, tetra-

(a) 

I. 
(b) 

FIG. 1. (a) Co­
ordinate system of 
hypothetical A B% 
molecule (see end 
of Sec. II). (b) Illus­
trating synchronous 
motion of electron 
orbital and nuclei 
(see end of Sec. IV.) 
The straight arrows 
show instantaneous 
displacements of B 
anions. The ^-orbital 
orientation shown in 
solid outline is for 
elastically stabilized 
motion; the orien­
tation in dashed out­
line is for centri-
fugally stabilized 
motion. 

hedral, and hexagonal, which include a threefold axis.17 

In cylinder symmetry, however, the Ak must vanish,1 

and Eq. (2.13) cannot be used. Our Hamiltonian also 
does not apply to the case of threefold electronic 
degeneracy in a cubic crystal field or to twofold de­
generacy in a tetragonal crystal field. All such cases 
would require reconsideration of the model Hamiltonian. 

To exemplify the model Hamiltonian we consider a 
hypothetical plane molecule shown in Fig. 1(a). We 
assume that the central atom has only filled electron 
shells except for one tightly bound electron in a (two-
dimensional) p state with wave functions Xii2—e=pi9f(re)J 

where re and 6 are polar coordinates and / is a radial 
function. We assume very artificially that the mass of 
the central atom is infinite and that only radial displace­
ments Zi, Z2, Z3 for the three peripheral atoms (see 
Fig. 1) are allowed. The normal coordinates are 

Cio= (M/3)+1 /*(Z1+Z2+Z8), (2.14) 

Q1=(M/2)+^(Z1-~Z2)) (2.15) 

5 i = (W6)+ 1 / 2(2Z3~-Z1-~Z2) . (2.16) 

That is to say, there is one coordinate Qio of non-
degenerate type and one pair (QijSi) of degenerate type. 

17 In the case of cubic or regular-tetrahedral symmetry we may 
select any one of four existing threefold axes for the operation (ft, 
and ignore all other symmetry operations. Those symmetry 
operations of the cube or regular tetrahedron which we ignore 
cause one or another Qk>o to be degenerate with each of some 
(though not all) Qk±. These triple degeneracies have no conse­
quence to the theory which follows, because the corresponding 
Ak vanish from group-theoretical character analysis (see Ref. 1). 
(We assume here that the electronic degeneracy is still only 
twofold.) The Ak for other values of k, which correspond to two-
dimensional irreducible representations of the cubic or tetra-
hedral group, will not vanish in general and it is only these k that 
need to be included in the sums of (2.13). 
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FIG. 2. (a) Static-
equilibrium state of 
pseudomolecule. (b) 
Illustration of co­
ordinate transforma­
tion suggested by the 
static state. 

Here M is the mass of one peripheral atom. Using 
relations (2.12), (2.14)-(2.16) one may verify Eq. (2.6). 
Our illustrative molecule is mathematically equivalent 
to that of Child and Longuet-Higgins,11 in so far as the 
Jahn-Teller effect is concerned. 

III. FIRST TRANSFORMATION 

In this and the following section we introduce two 
successive transformations, each of which leads to an 
approximate separation of a collective part of the model 
Hamiltonian (2.13) from the noncollective part. The 
first transformation leads to a Hamiltonian form 
appropriate to states in which the collective motion 
has low energy. The second leads to a form appropriate 
to centrifugally stabilized collective states of higher 
energy. Both appear to be useful only in the strong 
coupling approximation. 

Our procedure is suggested by analogy with the 
Wilson and Howard theory15,16 of vibration-rotation 
states of molecules, which begins with an expansion of 
the Hamiltonian about the static-equilibrium configura­
tion of the molecule and introduces the orientation 
angles of the static equilibrium as dynamical variables. 
Our method also has much in common with strong 
coupling theory of meson-nucleon interaction.14 

Following the molecular analogy, the role of atomic 
positions is played by Qj and Sj. The static form of the 
"molecule" is found by setting Pj=Rj=0 (j= 1, 2,- • -n) 
in Eq. (2.13), diagonalizing the remainder and mini­
mizing with respect to Qj and Sj. The minimum 
condition is 

Qj°=A ya>r2 cos/3, Sy°= A jooj"2 sin/3, (3.1) 

where (3 is an arbitrary parameter. This configuration 
is illustrated in Fig. 2(a) which shows a linear "mole­
cule " in two-dimensional Qj—Sj space, with one point 
on the line ' 'pinned" to the origin. The energy does not 
depend on the orientation angle @. 

The static configuration found here suggests the 
following transformation [see Fig. 2(b)]|: 

(3.3) 

(3.4) 

Qj— (#i+#i) cos<£— jj sm<j> 

Sj~ (dj-\~0Cj) sin#+yy cos<j>. 

Here aj is a constant of either sign while Xj, yj, and <j> 
are dynamical variables. An innovation of the present 
method will be to determine ay from the condition of 
dynamic equilibrium rather than static equilibrium. 
That is to say, the centrifugal distortion of the "mole­
cule" rotating about the origin is introduced from the 
start rather than later as a perturbation, as is customary 
in molecular theory. 

The transformation as given introduces 2n-\-\ 
variables in place of the original In. The appropriate 
constraint to impose is suggested by consideration 
of the total pseudo-angular-momentum in Qj—Sj space. 

J=Y,(QrSi-sm. (3.5) 

Substituting Eqs. (3.3) and (3.4) we find 

J=T,i {aiVi+ (ociyi--yiXi)+(j)l(ai+xi)
2+yi22}. (3.6) 

We note that if we let 

then / will be a sum of two terms, one .]Tt- (%$ — y%Xi), 
the momentum with respect to the rotating "molecular" 
frame, and the other, the angular velocity <j> times the 
moment of inertia £]» [(a*+#*)2+y;2] of the molecule. 

Thus (3.7) is the natural condition to apply. When 
integrated once, it gives 

J2 aiyi^O, 
4 = 1 

(3.8) 

with the integration constant arbitrarily set to zero. 
However, since quantum mechanics is easier without 
constraints on the coordinates we introduce a real 
orthogonal, normalized, transformation matrix 
^ij (h J— 1J 2* • -n), whose elements satisfy 

Z2 ^ij^ik — $jk — ] C ^ji^ki • 

The transformation is 
w - l 

7 = 1 

(3.8a) 

(3.9) 

Hn -iZiAi2* (3.2) 
Here all n2 of the coefficients A*y are considered defined, 
although only n2—n of them appear in Eq. (3.9). We 
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now have 2^-independent variables consisting of 
Xi(i—1, 2,- • -n), Vj 0 ' = 1 , 2,- • -n—1), and <j>. The con­
straint (3.8) now becomes a condition on X^-: 

Ea t -X, y =0, y = ( l , " 2 . . . n - l ) . - ; (3.10) 

The orthogonality of X -̂ means that 

ai=R\in, (3.11) 

where, to normalize X»n, 

JR2 = £ > , * . (3.11a) 

The n—1 remaining columns of X -̂ will be determined 
by the solutions of a secular matrix to be specified later. 

We now determine the Hamiltonian expression for 
the kinetic energy 

Z W E (Q?+Si2), (3.12) 

using the standard procedure of classical mechanics. 
We substitute Eqs. (3.3), (3.4), (3.9), and (3.11) into 
(3.12). We then write the canonical momenta 

Xi=dT/dXi=Xi-yi4> ( i= 1, 2- • -n), (3.13) 

Vj^dT/toj^Vj+m^iPi ( i = l , 2 , - - . w - 1 ) , (3.14) 
i 

J = dT/d4>='t{xiyi-yixi+<i>l(ai+xiy+yfi}. (3.15) 

Since T is a homogeneous quadratic form in the general­
ized velocities, we may write 

Eliminating the generalized velocities from this expres­
sion, we find 

2T^L0"(R+i:xinXi)-2+i:x^+z v*y (3.16) 
i—l i—1 j — 1 

where 
n n—1 

^o=/ -E E M ^ n - ^ x * ) . (3.17) 

Just as in the molecular theory of Wilson and 
Howard15,16 this expression for the kinetic energy may 
be quantized by recourse to a general theorem of 
Podolsky.18 Podolsky showed that if a classical Hamil­
tonian is given by the expression 

H c = i E pVpips+W (3.19) 

18 B. Podolsky, Phys. Rev. 32, 812 (1928). 

where pi is a generalized momentum conjugate to q^ 
and p^'and W are functions of qi, q2, • • • qv only, then the 
quantized Hamiltonian operator is 

Hq=h £ (p1 /4^p-1 /4)p^'(p-1 /4^yP1 /4)+^, (3.20) 

where p is the determinant of the coefficients pij. Here 
pi and g» are now operators satisfying the relation 

LpiyQjl^W^iJ 

Now Eq. (3.16) is not precisely in the form of the 
kinetic term in Eq. (3.19) because Lo is not a canonical 
momentum. However, it is still true that Eq. (3.16) may 
be quantized according to Podolsky's prescription just 
as if LQ were a canonical momentum. This fact may 
be verified by carrying out the prescription and then 
making the substitution (3.17). One finds that equiv­
alence with the correctly quantized expression follows 
from the fact that orders of factors appearing in Eq. 
(3.17) are immaterial and the fact that the determinant 
of the coefficients connecting the sets' (Lo,Xi}Vj) and 
(J,Xi,Vj) is unity. 

Proceeding to follow Podolsky's prescription we note 
that the determinant of the coefficients in Eq. (3.16) 
is simply 

P = ( ^ + E X < n ^ ) - J 2 . (3.21) 

To simplify the resulting expression for the operator 
T, we require representations of the momentum 
operators which correspond to the classical definitions 
(3.13)-(3.15): 

fi d fi d fi d 
Xi = -. — ,. 7 , = - — ,. / = — . (3.22) 

i d%i i dvj i d<j> 

Using these expressions, we find that p commutes with 
Lo when Eq. (3.8a) is taken into account, and with Vj 
as well. However, p does not commute with Xit By 
direct calculation we find 

.p^Xjtp-wXrfi^ Xk*-\Vkh*p, (3.23) 

so that application of Podolsky's theorem to Eq. (3.16) 
leads to a kinetic-energy operator of the form 

/ ¥\ 
2T=IL0

2 )(R+X\inXi)-* 

n n~l 

+ E I , 3 + E F / . (3.24) 

Note that this differs from the classical expression 
(3.16) only by the appearance of — &2/4. 

Podolsky's form of quantization has the property 
that the Jacobian of the transformation connecting the 
Cartesian-position coordinates (formally, equivalent to 
our Qi and Si) to the general coordinates, which he 
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finds to be just p1/2, is absorbed into the final wave 
function,18 so that the new \pa" is related to the old 
h' by 

*a"=p-llN>a'- (3.24a) 

Accordingly, the correct normalization condition, 
consistent with Eqs. (2.4a) and (3.24a), is 

Xdxi- - -dxndvv - -dvn-id<j>= 1. (3.25) 

I t should be noted that the transformation (3.3) and 
(3.4), for a given set of a*, is not unique since the 
operation 

<j>—>0 = 7T, di ~ X{ • — (di+Xi), yj -yj (3.25a) 

leaves Qi and S% unchanged. We assume \pa" to be 
defined only in the simply connected region satisfying 
the inequality 

Rp-u*=R*+'£ aiXi=i: Oi(Gi+Xi)ZQ, (3.26) 

since the operation (3.25a) maps this region into its 
complement. This corresponds to the use of only 
positive values of the radius in problems involving 
polar coordinates. Since \pa

f is finite everywhere, \pa
/f 

must vanish when p~1 = 0, according to Eq. (3.24a). 
This is on the boundary of the region in which \f/a" is 
defined, according to Eq. (3.26). 

The limits on <£ in the integral (3.25) are 0 and 2TT 
as usual and the wave function satisfies the periodicity 
condition 

*«"fo+2ir) = ik"(0) , a = l , - 2 . (3.27) 

I t follows that frlJ has the usual eigenvalues 0, ± 1 , 
± 2 , . . . . 

Now we must consider the off-diagonal potential 
part of Eq. (2.13), 

1) 
/ 0 Qk+iSk\ 

= HAk[ ). (3.28) 
*-i \Qk-iSk 0 / 

Substitution of Eqs. (3.3) and (3.4) into (3.28) intro­
duces 0 into V. This is awkward because we would like 
to consider the orientation of the pseudomolecule to be 
a cyclic variable. The trouble is that / as defined does 
not include the pseudo-angular-momentum of the 
electron state. This defect is remedied by introducing 
the unitary transformation A a=E/3 X/ll^a, 

1 / e^12 

V2Vr^/2 

ie1*12 

(3.29) 

which transforms Xi and X2 into states Ai and A2 which 
rotate with the "molecule.'' For example, if Xi,2 

= e::jFidf(re), as assumed in the illustrative example at 
the end of Sec. I I , then the new functions are VZ/(re) 

Xcos(0-<£/2) andV2/(re) sin(0-</>/2). The orientations 
of these orbitals relative to the instantaneous molecular 
deformation are shown in Fig. 1(b). 

Applying this to "0 we have 

n n-1 
cir11)cU= E Alaz(ai+xi)+a1 E \ikvk~}, (3.30) 

where we have used Eqs. (3.3), (3.4), and (3.9), and 
where we have adopted the Pauli-matrix notation: 

0"1 = 
\ 1 0 / \i 0 / \0 - 1 / 

We note that %, commutes with T except where / 
occurs. We have by direct calculation 

c U- 1 J c U=/- i fc r 2 , J^(h/i)d/d<t>. (3.31) 

Since the eigenvalues of an operator are unchanged by 
a unitary transformation and since the eigenvalues of 
o-2 are ± 1 , it follows that, although the eigenvalues of 
fi~lJ in the initial representation were integers, they 
are now half-integers: ± § , ± f , ± f , ••• . The com­
ponents \f/i and $2 of the wavefunction in the new basis 
are coefficients in the expansion of ^ : 

^ - ^ ( A i ^ i + A ^ ) . 

The half-angle exponents appearing in Eq. (3.29) 
imply the condition 

lk(0+2ir)=--ik(0) (3.32) 

in place of Eq. (3.27), which is consistent with the 
half-integer quantization of / . 

I t should be kept in mind that the transformation 
(3.31) has changed the meaning of / as a dynamical 
variable. Now, / includes the pseudo-angular-mo­
mentum of the electron motion as well as the nuclear 
contribution, in spite of the fact that its form as a 
differential operator has not changed. 

Finally, the complete quantized Hamiltonian is 

fli = <Ur1[(r+1))+i £ o>k
2(Qk

2+Sk
2)^, (3.32a) 

&=\(D—)(R+J: \inXi)~2+h E x,2+i E 1 vk 

+lI .4(f l .+«. - ) 2 +( E x^fc)2] 

+ E A'ilo-zidi+xd+tr! E ^ikVk] , (3,33) 
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with 
n n—1 fl 

Z,=/-E E \>k(xiVh-vtXi) at. (3.34) 
i^i ft—i 2 

We will now recapitulate what has been done and 
indicate how the first transformed Hamiltonian (3.33) 
might be applied. In deriving Eq. (3.33) we started out 
with a system described by 2n oscillator coordinates. 
We then separated out one rotational coordinate <j>, 
leaving 2n—\ oscillator coordinates X{ (i=l,2- - -n), 
Vj 0 ' = 1 , 2- • -n— 1). The object of this transformation 
was to separate out a collective, local, pseudorotational 
motion synchronous with rotation of the degenerate 
electron state in its 2-dimensional function space. This 
separation leaves behind a "field" of 2n—l oscillators 
coupled to the local rotation. The success of this method 
of describing the system depends on the extent to 
which the coupling between the local rotation and the 
field oscillators may be considered weak. 

An important characteristic of the Hamiltonian 
(3.33)-(3.34) is that / is a constant of the motion, 
since H1 does not depend on the conjugate coordinate 
<j). Conservation of angular momentum is not a general 
property of the system under study but follows from 
the simplicity of the model. I t is known in studies of 
the static Jahn-Teller effect that introduction of 
third-degree terms to the nuclear potential4 or quadratic 
terms to the electron-coupling5 brings out physical 
consequences of the crystal-field symmetry.19 In our 
model, such terms would introduce an angular depend­
ence in the potential which would spoil the conservation 
of / . 

Application of the Heisenberg equation of motion 

ifi(j>= l&H1! (3.35) 

to Eqs. (3.33) and (3.34) results in 

^ Z ^ + Z X ^ . (3.36) 
v=l 

Thus, L may be interpreted as the collective angular 
momentum and (R+X)i" ^inXi)2 the moment of inertia 
of the pseudomolecule. In particular, if the field dis­
placements %i vanish, the moment reduces to R2, in 
agreement with the mechanical definition of rigid 
moment of inertia. (Note that the effective masses 
here are all unity.) This interpretation fits in well with 
Eq. (3.34) written in the form 

n n—1 

/=L+P<r2+£ E \uixiVt-vtXi). (3.37) 
i = l &=1 

19 Dynamical effects of an angular potential in two-coordinate 
models of the Jahn-Teller effect are discussed by V. I. Avvakumov, 
Zh. Eksperim. i Teor. Fiz. 37, 1017 (1959) [translation: Soviet 
Phys.—JETP 10, 723 (I960)]; and by M. C. M. O'Brien, in 
Symposium on Paramagnetic Resonance, edited by W. Low, 
[Academic Press Inc., New York (to be published)]. See also 
Ref. 10. 

Since / is the total momentum, L is the collective part, 
and \hu2 is the electronic part, it follows that the double 
sum represents the pseudomomentum of the field. This 
interpretation will be more transparent after the second 
transformation to be given in the next section. 

We have yet to determine a convenient set of a. 
With this end in mind we first simplify the electron 
coupling represented by the terms involving ah a2, 
and <r3. We assume the strong coupling limit in which 
the steady ' 'Jahn-Teller" distortion represented by R 
is greater than the vibrational fluctuation 5^Xt»#» 
appearing in the moment of inertia. As we increase ai 
and R in Eq. (3.33) the dominant electron coupling 
is through the term in cr3. Therefore, we assign <r3 its 
diagonal values ± 1 and obtain the diagonal elements 
of H1 in the strong coupling limit as follows: 

H\2=±L'2(R+i: \ ^ ) " 2 + | £ X*+i Z Vk
2 

n n—1 

+1E ^ [ ( a i + ^ + t E x<***)2] 
i = l Jfc=l 

n 

±T, Ai(ai+Xi) (3.38) 

n n—1 

L W - E E litixtVi-vtXi). (3.39) 

Here the upper sign is used for Hl
h the lower for H1

2. 
In this approximation, the sole effect of the electron 
coupling is to produce the large linear potential term 

A useful set of di is obtained by requiring the existence 
of the solution 

vk=0, F * = 0 , jfe=l, 2, . . . » - l 

<t> = <at, J = L / = c o n s t , (3.40) 

to the classical equations of motion obtained from 
Hxif2. Here a? is a constant angular velocity of the 
pseudomolecule. The equations of motion reduce to 

-Xi^dBP^/dXi^O, (i=l,2,--n) (3.41) 

and 

o>=UR~2. (3.41a) 

We find the condition 

ai=±Ai/(G32-a>i2), ( i = l , 2, • • -n). (3.42) 

In Eq. (3.42), either the plus sign or the minus sign 
must be adhered to for all i and a given angular velocity 
(a. Both signs give the same state of motion, except for 
a phase difference of 7r, because of the double-valuedness 
of the transformation (3.3) and (3.4). The ambiguity 

file:///uixiVt-vtXi
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of sign may be removed by adopting the convention 

l M i > 0 , (3.43) 

which, according to Eq. (3.38), permanently identifies 
<r3= + l with the state of higher electron-coupling 
energy. According to this convention, Hl\ or Hli will 
have a minimum (but not both) for any given co, 
depending on which choice of sign in Eq. (3.42) satisfies 
the inequality (3.43). 

The classical, dynamical, equilibrium energy of the 
system is given by the stationary value of H, obtained 
by substituting Eqs. (3.40)-(3.42) into (3.38) 

Hmin=± E • (3.44) 
*-i (co2-^-2)2 

We note here a peculiar property of this system which 
is that at and the energy (3.44) both tend to zero for 
| co | —> co. States of motion which approach this limit 
are particularly interesting because they involve a 
small configurational distortion which means that the 
model Hamiltonian (2.13) is accurate. Quantized 
motion near this limit is the subject of Sec. V. 

We note that a* and Hmin diverge if there exists an 
oscillator frequency on that satisfies 

Wi=|o>|. (3.45) 

In fact, even if |co| lies in a continuum of cot-, as in a 
solid, the integral corresponding to Eq. (3.44) is 
infinite. This result is accounted for physically by the 
fact that if | co | is tuned to an oscillator frequency co*, 
then that oscillator will absorb energy from the rota­
tional motion without limit so that a steady state with 
finite energy cannot be found. If the Hamiltonian H1 

is to be used in the study of states satisfying Eq. (3.45), 
it will be necessary to determine ai by some criterion 
other than the minimum of energy. 

As long as such divergencies are avoided, the Hamil­
tonian (3.33) with ai given by (3.42) provides a feasible 
starting point in a quantum treatment. That is to say, 
we let / be diagonal: 

Wa=M« ( a = l , 2 ; j = ± f , ± f , ± f , . . . ) . (3.46) 

We take for \fta a product of exp (ify) and a function of 
all %i and vk. Replacing / in Eq. (3.34) by hj9 and 
expanding H1 in powers of xiy viy Xiy Viy we would find 
that, because of our choice (3.42) for ai (using an 
assumed Z/)> the leading terms in the expansion of H1 

would be quadratic. Diagonalizing the appropriate 
secular equation would provide us with 2n—l new 
normal oscillator modes from which new eigenfunctions 
could be constructed. We would replace Z/2 in Eqs. 
(3.42) and (3.40) by the expectation value (L2) in the 
zero-order eigenfunctions in a self-consistent manner. 
In fact, for sufficiently small (D) the centrifugal 
potential is negligible and xh x2, • • • xn are normal co­

ordinates. From some such starting point it should 
generally be possible to develop expressions for energy 
levels and transition rates by perturbation methods. 

The program just outlined may be useful in appli­
cation to molecules and impurities in solids as long as 
the divergences (3.45) are avoided. In the case of a 
solid the applicability will be restricted by the existence 
of the continuous band of co* from zero to comax, which 
prevents direct application of the method to all low-
lying states of the collective rotator, except the ground 
state. On the other hand, even the low-lying states 
might be treated by neglecting those vibrations with 
to* close to | co | (the acoustic band, say) and later 
treating real transition processes by perturbation 
theory. 

IV. SECOND TRANSFORMATION 

We saw in the previous section a divergence problem 
which arose from an attempt to find eigenstates of the 
Hamiltonian when the frequency co of collective rotation 
lies within a baiid of lattice frequencies. However, we 
can still hope to find simple solutions when j co | is above 
the whole band. We will here introduce a second, 
pseudoradial, collective coordinate into the Hamiltonian 
by means of which it is possible to separate the collective 
motion from the field oscillation to a high degree for 
| co | —» oo. I t might seem at first sight that this limit 
would be of little interest. However, we have seen in 
Eq. (3.44) that it does not correspond to infinite energy 
but instead falls into a medium-energy range (collective 
energy —» 0). We will indicate in Sec. V that such states 
ought to exist in appropriate systems. The form of the 
Hamiltonian we derive here appears to be very similar 
to that of the ' • splitting" approximation in meson-
nucleon theory,14 although we apply it to a portion of 
the spectrum not usually considered in meson physics. 

The fact that a pseudoradial collective coordinate 
may be usefully introduced into this system is strongly 
suggested by consideration of a special example. 
Returning for a moment to the model Hamiltonian 
(2.13), suppose that all of the coy are equal to coi. Then 
the choice of normal modes of unperturbed oscillation 
is completely arbitrary. In particular, we could choose 
a new set in which one pair is 

S i = ( E ^ b 2 ) - 1 / 2 I U A , (4-1) 

and the remaining In—2 new coordinates are any which 
will complete the orthogonal set. The transformed 
Hamiltonian would be 
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I t is evident that in H' the motion of Q\ and S\ is 
completely uncoupled from the remaining coordinates. 
The problem of diagonalizing H' now reduces to a two-
coordinate problem, which has been solved by trans­
formation to polar coordinates and numerical solution 
of a secular matrix.9 

In this special example, the utility of a radial and an 
angular coordinate in Q1—S1 space is easily appre­
ciated. As a matter of fact, the transformation (4.1) 
would provide a useful starting point for separating the 
collective motion approximately even if the co* were 
not equal. The procedure we adopt is essentially along 
this line, but more general in order to make the separa­
tion more efficient. Also, our procedure makes simple 
the connection between our new Hamiltonian and our 
earlier Hl, which connection is important in the 
discussion of energy levels in the next section. 

I t is convenient to introduce the radial coordinate 
with reference to H1 of Eqs. (3.33) and (3.34). The 
form of the coefficient of L2 in Eq. (3.33) suggests that 
the radial coordinate r should be defined by 

r^R-¥Z^inXi (4.3) 

Once this choice has been made, the remaining n— 1 
transformed %i coordinates, which we will call ttj, must 
complete an orthogonal set. I t is natural to use precisely 
the same transformation matrix X*y as was used to 
obtain the vit Thus, we set 

n n 

Uj^Yl^ijXi, ^ : = I I X ^ y , Un^r—R. (4.4) 

Here, however, we use all n columns of the matrix \^-. 
Since this transformation is orthogonal, the same 

transformation applied to Xi 

Uj=i:\uXi, Xi^XuUj (4.5) 

yields new momenta TJi satisfying the proper commu­
tation relations 

£ff *,«,]= (*A)«*y (* , i= 1,2, •••»), (4.6) 

where Un is identical to the radial momentum Pr 

conjugate to r. 
Substituting Eqs. (4.4) and (4.5) into (3.33) and 

(3.34) we obtain our second transformed Hamiltonian, 
H2, with the help of Eq. (3.11): 

H2=-
L2-\¥ 

2r2 

+ i £ (tfiH-*7)+i5>< 
7=1 

' /n-l 

L v - i 
* A 

+ (*zU) + £ 52 ufXinXijUjT 

n n— 1 

+ E X Al\ij{(TzUj+(rxv2) , (4.7) 

ith 

and 

n - l 

*=1 

li=HiVi—viUi. 

(4.8) 

(4.9) 

We see that in one sense H2 has a simpler structure 
than Hl because the relationship (4.8) is more trans­
parent than the corresponding Eq. (3.34). That is to 
say, the quantity k, defined by Eq. (4.9), is the pseudo-
angular momentum of the (i4i,Vi) two-dimensional 
oscillator. Thus, it is clear from Eq. (4.8) that / is 
made up of contributions from collective momentum 
L, field-oscillator momenta k, and electronic momentum 
f^o-2. In case there is but one pair of degenerate vibra­
tional modes, we have n=l, and Eq. (4.7) may be seen 
to reduce to a form equivalent to that investigated in 
Ref. 9. 

We have yet to specify X*y [we have not made use of 
Eq. (3.42) in this section]. These are specified by 
considerations of convenience in our attempt to separate 
H2 into parts with a minimum of interactions. Assum­
ing for a moment that the column \in (i= 1, 2,- • -n) is 
known, we determine the first n—\ columns of Xij by 
requiring the coefficients of the quadratic Hi potential 
(and Vi potential) to be diagonal: 

I X) wA«Xtt= W«y* U, *= 1, 2, • • • n-1), (4.10) 

where IJLJ is the new natural frequency. This can be 
done, in principle, consistently with Eq. (3.10) by 
solving an (n—1) by (n— 1) secular matrix. (To 
whatever extent X*y remains undetermined because of 
degeneracies among nj} it may be chosen arbitrarily.) 
We now determine values of \{n (i— 1, 2,- • -n) ap­
propriate to a zero-order eigenstate of H2 by means of a 
self-consistent procedure. They will be slightly im­
proved in comparison to the values given by Eq. 
(3.42). First, we make the assumption, basic to this 
whole paper, that the zero-order wave function is an 
eigenstate of o-3 with eigenvalue ± 1 . Then we define a 
complete set of eigenstates of each separable part of 
H2 with Eq. (4.10) satisfied and the last two terms of 
Eq. (4.7) neglected. We require these eigenstates to 
diagonalize / and h (i= 1, 2, • • -n— 1) as well because / 
commutes with H2 exactly, and U commutes with H2 

when the last two terms of Eq. (4.7) are neglected. 
The eigenstates 3?^,™/' (i= 1, 2,- • -n—1), exp(ij(j>), and 
&m,sr defined this way satisfy the conditions given 
below: 

Hi=$(Ut+V*+»*ut*+»*v*), t = l , 2 , . - . n - l (4.11) 

with 
nii——ni, —ni-\-2, -~Wi+4,- - -fii 
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and 

with 

»<=0, 1, 2 - - - ; 

/ exp (ifo) = fij exp (ifo), 

h2m2 

with 

and (4.15)-(4.17), the Hamiltonian (4.7) is equal to 

w—1 n 

(4.12) H^Hr'+T, Bk+(<rrFl) E X i K ^ 

(4.13) 

^ r = i p r 2 + ± £ x ^ ^ + 1 E co/X«V2, (4.14) 
2r2 i~i '=1 

where 

-ft[V- E /»>«/2r»+E E «A*»x« 

XCw^rTo-gfjTo-ifi)*], (4.19) 

Hr' = hPr*+(J- E /*)V2f*=l=E X«^*r 
& = 1 1 = 1 

m=j-T, Mi, ^=0 , 1,-2, •••, 
i = i 

and where £ m , s is the eigenvalue of the radial Hamil­
tonian Hr, which embodies the collective part of the 
motion. Note that, since r=p~1 / 2 , it follows from the 
discussion following Eq. (3.26) that <£>m,/=0 for r = 0 . 

Thus, in zero order, one component of {^1,^2} is the 
product 

n- i 

{=1 

and the other component is zero. We note that Eq. 
(4.7) contains undiagonalized terms linear in Uj and 
bilinear in r and Uj. The first type displaces the equi­
librium point of the oscillator Uj and the second 
represents an undesirable coupling. We can eliminate the 
first type and minimize the effect of the second by 
requiring the expectation value of the coefficient of 
uj, with respect to $,»,/, to vanish. This condition 

E [ f X < n ^ d z i 4 , - > « = 0 , * = 1 , 2, • • • » - ! ; (4.15) 

f = ($m, / , f$m, / ) (4.15a) 

serves to determine X4W [and through Eq. (4.10), 
\ik(k^n) as well]. For, the coefficient of X^ in Eq. 
(4.15) must be proportional to \{n because Xa-& is an 
orthogonal matrix. Therefore, 

\in=±Ai/(C—fa)i2), i=l, 2,— -n, . (4.16) 

where the constant C is determined by 

Ex^2=i (4.17) 

[Strictly speaking, Eq. (4.16) is an implicit relation 
because f is a function of X;n.] The relations (4.16) and 
(4.17) are a little different from the Eq. (3.42) derived 
from H1. The conditions (4.16) and (4.17) are better 
than Eq. (3.42) when H2 is being used because they 
take into account the displacement of f from the 
potential minimum which is caused by the unsymmetric 
nature of the radial potential. 

With \ik now completely determined by Eqs. (4.10) 

+ i £ « A . - n V . (4.19a) 

Note that 11/ reduces to Hr when H/ operates on an 
eigenstate of J and all h. The form of H2 written here 
exhibits the coupling terms apart from the separable 
terms H/ and Hk (&=1, 2- • -n— 1). 

We will now recapitulate the meaning of Eq. (4.19), 
which is the basis for most of the subsequent discussion. 
A series of transformations, of which X^ (i} k= 1, 2, • • • n) 
are parameters, have been applied to the model Hamil­
tonian of Eq. (2.13) in order to generate the exactly 
equivalent Hamiltonian H2. The virtue of IP is that it is 
approximately separable and may be used to calculate 
energy levels and transition probabilities by means of 
perturbation theory if the X^ are chosen correctly. The 
values of X^ to be used, and therefore, the actual form 
of H2, are governed se]f-consistently by a property of 
the initial state under consideration. To be explicit, we 
first let \ik be undetermined and neglect all of Eq. 
(4.19) except H/+^2k^in~l Hk. This separable Hamil­
tonian, in which the term H/ governs the collective 
motion, generates a complete set of product eigen-
functions, whose factors satisfy Eqs. (4.11)-(4.14). The 
set of eigenfunctions, which depends on the complete 
matrix X^, is assumed to be known. The functions 
$m,sr depend only on the column \tn (i— 1, 2,• • -n). 
To determine this column, we select a pair of quantum 
numbers m and s, and an eigenvalue of 0-3, characterizing 
the zero-order approximation to the initial state of 
collective motion under consideration. [The quantum 
numbers 7^ and nii have no influence on X^, and j is 
determined by Eq. (4.14).] The choice between =±=1 for 
the zero-order eigenvalue of <73 determines whether the 
upper or lower sign is to be used consistently in Eqs. 
(4.14)-(4.19a). Then a value of f, which depends on 
m, s, and \in (i— 1, 2,- • -n) is calculated from Eq. 
(4.15a). The remaining n—\ columns of X^ are deter­
mined from the conditions (4.10), (4.16), and (4.17). 
This serves to determine completely the form of IP 
which, in the end, depends only on the zero-order values 
of m and s and the zero-order eigenvalue of <73. 

The remaining terms in H2, each of which is either not 
separable with respect to coordinates or does not 
commute with 0-3, may be taken into account by 
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perturbation theory. The complete set of eigenfunctions 
specified by Eqs. (4.11)-(4.14) is suitable for expanding 
that component of {^1,^2} which is nonvanishing in 
zero order. On the other hand, a satisfactory set of 
expansion functions for the other component of {^1,^2}, 
consistent with the already determined X^, does not 
appear to exist generally. However, this fact does not 
appear to present an insurmountable obstacle to the 
application of the scheme. 

We are now in a position to see that the utility of H2 

complements that of H1. We saw in Sec. I l l that 
H1 is appropriate when the centrifugal potential 
(L2—\h2)/2r2 is small, for then the %i (i=l,2,- - -n) 
are nearly separable normal coordinates. Now we see 
that when the centrifugal potential in H/ is large, and 
the restoring forces small (proportional to w/), then r 
becomes a good collective coordinate coupled weakly to 
the normal coordinates %i and vi (i= 1, 2,- • -n— 1). 
This will become more evident when we estimate effects 
of the coupling in the next section. 

I t appears that the coordinates v,L ( i = l , 2,- • -n—1) 
are the same regardless of which limiting case is 
considered. This is true only in a symbolic sense since 
the definition of V{ depends On A in and this takes quite 
different values in the two limiting cases. For weak 
centrifugal forces in the classical limit, we have 

co;2/a>2 —> °° (i= 1, 2, • • * n) 

A / Ak2\~* 
X,-n->—(E — ) , *i=0,ifcs*0 (4.20) 

according to Eq. (3.42) and the convention (3.43). 
For strong centrifugal forces 

co//o>2-^0, Xin-tAiCEkAk*)-1'*, (4.21) 

We also see from the above that H1 may be ap­
propriate to motion on the lower branch of the potential 
(<T3= —1), assuming there exists a lower bound for 
a)i, as in the case of a molecule. On the other hand, H2 

is appropriate to the upper branch of the potential 
(<T3= + 1). Thus, it appears that only the upper signs 
in Eqs. (4.14)-(4.19a) will be useful in practice. 

The complementary relationship between the utility 
of H1 and that of H2 may be made plausible by means of 
a physical argument. The elastic restoring force 

n 

— 2 o>i2\m2r 

acting on r [see Eq. (4.14)] is negative while the 
centrifugal force fi2m2r~3 is positive. On the lower 
branch of the potential the Jahn-Teller force 

i AinJl i 

is positive, according to the convention (3.43). I t 

follows that elastic forces are vital to the establishment 
of equilibrium on the lower branch while centrifugal 
forces are not. Hence, lower-branch motion may be 
termed elastically stabilized. On the upper branch of the 
potential, however, the Jahn-Teller force 

2—ii "inA-i 

is negative. In this case, centrifugal forces are vital to 
establishment of equilibrium but elastic forces are not. 
Hence, upper branch motion may be termed centrijugally 
stabilized. 

Therefore, it is clear that the form of H1, which 
emphasizes the structure of the elastic forces is useless 
in discussing motion near equilibrium on the upper 
branch but may be useful in discussing motion near 
equilibrium on the lower branch. The form of H2, which 
emphasizes centrifugal forces, is useless near equilibrium 
on the lower branch but may be useful near equilibrium 
on the upper branch. 

Since these comments have been made with the 
limiting cases (4.20) and (4.21) in mind, they do not 
exhaust the possibilities. The situation, for example, 
with one group of lattice frequencies (acoustic modes, 
say) lying below | a> ] and another group (optical modes, 
say) lying above |<o| would deserve fresh consideration. 
Such considerations are beyond the scope of the present 
article. 

Further insight into the difference between motions 
on the two branches of the potential is gained from 
study of the hypothetical molecule described in Sec. I I . 
Figure 1 (b) illustrates the two kinds of motion. In either 
kind of motion, nuclei execute harmonic radial oscil­
lation with circular frequency | w |, while the localized-
electron p orbital rotates with angular velocity |co. 

Suppose that | co | s^coi. The nuclei can only vibrate at 
a frequency | o> | different from their natural frequency 
if they are subject to periodic driving forces with 
frequency | w | . Such forces are provided by the Coulomb 
interaction between the rotating negative charge cloud 
of the p orbital and the ligated ions (to be thought of 
as negative point-charges). The torques exerted by the 
ions on the electron-orbital total to zero in our model 
because of phase differences, as they must if co is to be 
constant. The angular velocity of the p orbital is JOJ 
rather than co because the driving force executes two 
periods during one revolution of the p orbital. This 
frequency relation and the phase relation between 
orbital and molecular motion were formally established 
in the remarks following Eq. (3.29). 

Now suppose | co ] <coi. Then the nuclear displace­
ments are in phase with the driving forces (case of 
elastic reactance). This case is illustrated in Fig. 1(b) 
by the orbital shown in solid outline. But if |co| >coi, 
then the nuclear displacements are 180° out of phase 
with the respective driving forces, as indicated by the 
position of the p orbital in dashed outline (case of 
inertial reactance). 
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TABLE I. Characteristics of the regions | co | <$Ccô  and |o>|2$>6)*. where 

|«|«c*i (alH) / | co I ̂ >>coi (all i) 

elastic stabilization 
elastic reactance 
lower potential branch 
one collective coordinate 
IIl nearly separable 

pseudocentrifugal stabilization 
inertial reactance 
upper potential branch 
two collective coordinates 
IP nearly separable 

The foregoing remarks are summarized by the two 
sets of associations in Table I. 

V. ENERGY LEVELS ON UPPER POTENTIAL 
BRANCH 

Generally speaking, a localized dynamical system in 
contact with a phonon field has no excited states which 
are exactly stationary. However, it is still useful to 
study its approximate eigenstates and relaxation fre­
quencies with respect to phonon emission. We can 
interpret the relaxation frequencies as level widths by 
means of the uncertainty principle. 

In this section we will describe the levels and widths 
in a part of the spectrum which is very naturally suited 
for the application of our methods. Although our 
attention is mainly directed at solids, the conclusions 
will, to a degree, be valid for molecules as well. The 
analysis will be semiquantitative in order to expedite 
the description with a minimum of calculational detail. 

We have seen how in the strong coupling limit the 
direction of approach to the problem hinges upon which 
of the two branches of the effective potential pre­
dominates. We have found that our method is in­
adequate for treatment of motion on the lower branch 
in a solid. Although a great deal of progress has been 
made on the corresponding aspect of the meson-nucleon 
problem,14 adaptation of the field-theoretic results will 
be considered beyond the scope of this paper. Instead 
we will consider quasistationary motion on the upper 
potential branch, for which our method is well suited, 
especially for large rotational frequency a>. We believe 
that the results should be of physical interest because 
di —»0 and Hr is finite in the limit w2 —» <*>. Thus, the 
motion near this limit involves (1) a region in (Q,S) 
space (close to the origin) for which the model Hamil-
tonian is accurate (higher order terms in the expansion 
of V are negligible), and (2) energy values (^10 3 cm -1) 
which are accessible to optical spectroscopy. 

We base the discussion on properties of the Hamil-
tonian forms H1 of Eq. (3.33) and H2 of Eq. (4.7) or 
(4.19), and on auxiliary relations. Both H1 and H2 are 
exactly equivalent to the model Hamiltonian of Eq. 
(2.13). 

We treat the couplings between potential branches, 
and between r and the field oscillators as perturbations. 
Thus, we set co;= 0 for all i initially and from Eq. (4.14), 
using the upper sign, we obtain in zero order, 

A — 2L/ i hinA. i. (5.2) 

Expanding Hr about the minimum r0 in the radial 
potential we find 

3A^(r-r0)
2 

Hr^P;l+WA\™\)m+ — + / ' ' , (5.3) 
2(ft|w|): 2/3 

where 
r^~fi2m2/A. (5.4) 

The eigenvalues of Hr, using the harmonic approxi­
mation to the radial potential are 

£»,s^( W 8 [ § I m 12/3+A#(*+f)/1 m | 1 / 3] , 
w=±i , ±f, ±f,- = 0 ,1 ,2 , -

(5.5) 

Note the relationship of these levels to the collective 
rotation frequency co given by 

|ra|a>3=^42, (5.6a) 

from which one finds that the zero-order radial vibration 
frequency is 

Go=V3a>. (5.6b) 

The levels (5.5) are plotted in Fig. 3. 

We mention in passing that a similar discussion of 
the radial Hamiltonian and energy levels pertaining to 
the lower branch of the potential is useful in connection 
with the Jahn-Teller problem involving a single pair of 
vibrational coordinates (n= 1). The relations for lower-
branch motion corresponding to Eqs. (5.1)-(5.6b) have 
been given in the works of Ref. 9. They are of course 
different because of the difference in the sign of the 
Jahn-Teller potential dzAr. We emphasize that the 
lower branch relations will not in general be meaning­
ful for n> 1, as in a solid. However, our upper-branch 
relations are meaningful for arbitrary n if a coupling 
condition to be given later in this section is satisfied. 

Now that we have the zero-order levels, we may 
consider the effect of each coupling term in Eq. (4.19). 
The most important term is — fi[_J—J2kn~l h^z/lr2 

because it causes relaxation to the state 0-3= —1 even 

Hr^Pr
2+h2rn2/2r2+Ar, (5.1) 

FIG. 3. Zero-order 
energy levels for cen-
trifugally stabilized 
motion (£=h2A2). In 
the limit co; —» 0 (all 
i), A2 approaches 
*LiAi2. Note that 
the zero of the energy 
scale used here is the 
energy of the state of 
zero-nuclear displace­
ment and velocity, 
which lies above the 
static ground state 
by an amount E6/e 
[see Eqs. (5.30) and 
(5.31)]. 
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FIG. 4. Illustrating the principal relaxation process for a 
centrifugally stabilized state in a solid. The electron system 
relaxes from an excited state to a lower state, each state providing 
a separate branch V+ or°0_ of the effective potential acting on the 
pseudoradial nuclear collective coordinate r. The coordinate r is 
not a good collective coordinate for r>rc. 

in the limit a>;—>0 (all i), whereas all other coupling 
terms tend to zero in this limit. I t is necessary then to 
consider also the term (<T3—l)Ar, as well, since it is 
large when <r3 = — 1 . 

This relaxation process may be explained with the 
aid of Fig. 4. The system starts initially on the upper 
potential branch in a bound state with energy E given by 
one of the levels (5.5). The term - * [ / — E f c n _ 1 4 > 2 / 2 r 2 

will cause a flow of occupation probability vertically 
down to the lower potential branch. Within the limits of 
the uncertainty principle, energy is conserved so that 
the velocity f on the lower branch is 

r = ± V 2 ( £ - U . ( / ) ) 1 / 2 , 

where the radial potential is 

V±=(h2m2/2r2)±:Ar. 

(5.7) 

(5.8) 

Here we have replaced J—^hn~l h by hm. If E—V- is 
sufficiently large, a classical description of the motion 
will suffice once the transition has occurred. If r > 0 
immediately following the transition, the motion 
continues on the lower branch toward the turning point 
ri of the upper branch, defined by 

E=V+(rd (5.9) 

if we neglect the possibility of retransition to the upper 
branch. If r < 0 immediately following the transition, 
the motion continues to the turning point r<i denned by 

E=V-(r2) (5.10) 

and reflects to r > 0 , finally combining with the first-

mentioned particle flux in motion beyond ri, neglecting 
again the possibility of retransition. 

For r>rh ^ / ( r ) - ^ 0 and further downward transi­
tions cannot occur. Continuing to neglect repeated 
transitions, the motion on the lower branch is governed 
solely by Eq. (5.7) up to a point rc at which the coupling 
of the coordinate r to the oscillator field cannot be 
neglected. In a real solid, such a point must be reached 
for sufficiently small o>4-, which we can understand by 
assuming the opposite to be true. So long as r is an 
uncoupled coordinate, Eq. (5.7) holds and r increases. 
Since m is a good quantum number, the centrifugal 
force is proportional to r~3. Since the equilibrium value 
of r on the lower branch increases without limit for 
decreasing ô -, the centrifugal force must eventually 
become less than the constant Jahn-Teller force A for 
sufficiently small o>». Also, the magnitude of the restoring 
force — YLi^i^kinr must eventually become as large as 
A (and, therefore, greater than the centrifugal force) 
in order to reverse the sign of f. However, we saw in 
Sec. I l l that when the harmonic forces are greater than 
the centrifugal forces the coordinates X{ appearing in 
Hl

2 [see Eq. (3.38)] move independently and the radial 
Hamiltonian is not even approximately separable. 

This argument makes plausible the assumption that 
after some time the motion is governed by harmonic 
forces. If we apply Hamilton's equations of motion 
to Eq. (3.38), neglecting centrifugal forces and the 
quantities vk and Vk for all k, we find the solutions 

Xi—d cos(a)it—<l)i)+Ai/o)i2—\inro, (5.11) 

where d and fa are constants of integration. We may 
now write, from Eq. (4.3), 

r=C+J2 ^inCi cos(coit—(j)i) (5.12) 

where C is a constant. We see that r oscillates about 
a large mean value when all co* are small. Even without 
solving for d and <f>i it is evident that the motion is very 
anharmonic for a realistic solid with well-distributed 
values of a>» associated with appreciable A*. (The XinCi 
are roughly proportional to Af/wi2.) Thus, the motion 
of r will damp out in a time of order cof1. Therefore, the 
coordinate r will never regain sufficient energy to 
re-excite the collective motion to the upper branch of 
the potential. 

The preceding argument neglected the motion of the 
v^ More complete equations of motion would show that 
the vk coordinates are subject to increasingly strong 
Coriolis forces as the motion proceeds following the 
initial transition. (But later the Coriolis forces diminish 
as o>2 decreases.) Therefore, these degrees of freedom 
are excited also. This fact only tends to reinforce our 
conclusion that the probability of retransition is 
negligible. 

The character of the motion described here for a 
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realistic solid is quite different for a molecule having 
only a single pair of oscillator coordinates or an artificial 
Einstein solid having all co* equal. [Recall the discussion 
leading to Eq. (4.2).] In either of these cases the two-
component radial Hamiltonian is completely separable 
so that the part of the potential shown by the dashed 
curve in Fig. 4 becomes meaningful. The energy of the 
collective subsystem is now conserved and retransition 
to the upper branch cannot be neglected. In fact, the 
concept of relaxation is now inapplicable because 
stationary states can be found which combine motion 
on both branches. Such levels have, in fact, been 
calculated.9'10 

We now estimate the relaxation time for the case of 
a solid. Since the most important term in the energy 
for motion on the lower potential branch is the kinetic 
energy, we neglect spatial variation of the potential, 
set 

•0_(r) = 1L(r 0 ) , (5.13) 

and let states with o-3= — 1 be eiKr, where K is constant. 
Elementary time-dependent perturbation theory 

gives for the transition rate W the formula 

W^{2ir/fi)y(E)\Hvl
f\\ (5.16) 

where E is the energy, Hu is the perturbing matrix 
element, and y(E)dE is the number of final states 2 in 
the interval dE. When the amplitude of oscillation is 
small we can set r=r0 in the equation 

fi2ni(T2 

to find 
2^2T/fi2m\ 

W= ) [E^%Mn))]™ 1 / 2 |<M^)l 2 , (5.18) 
ft \2foV 

where $i(pr) is the initial-state wave function in the 
momentum representation, normalized to unity. We 
associate fiW with the level width in accordance with 
the uncertainty principle. Approximating "0+ with a 
harmonic potential we find for the level width 

2-V1 / 2(*4)2 / 3 

31/2\m\l/hlf1/2 

/ =7 -3 - 1 / 2 H+2(H- ! ) , 

f» = ±i ,d=f,=fci •••; s = 0, 1, •••, 

where hs is the hermite polynomial of degree s. 
The assumption of constant Hu and V^r) made in 

deriving Eq. (5.19) is not justified for small \m\. Also, 
the particle reflection at the turning point r^ which we 
neglected, has the effect of causing interference between 
the two particle waves moving in the positive direction. 
Depending on whether the interference is constructive 
or destructive the correct value of fiW will be greater 
or smaller than (5.19). Therefore, Eq. (5.19) should 

be regarded as a semiquantitative indication of the 
linewidth which deviates systematically from the correct 
result for small | m | and, in the best circumstances, 
provides only a mean about which correct values will 
fluctuate from one level to another. 

The linewidth hWm,s/(hA)2ls calculated from Eq. 
(5.19) has values of about 0.04 for | m | = \ and s=0, 1, 2. 
For | m|>§ its values are less than 4X 10~~4. The dimen-
sionless units used here are the same as the units of 
energy in Fig. 3. Comparison of linewidths with levels 
shows that the levels are quite stable with respect to the 
relaxation process considered, although this conclusion 
is suspect in the case of | m \ — \ for the reason given 
above. 

We now consider briefly the terms in Eq. (4.19) 
proportional to cô 2. The term 

n w—1 

E L ^inUi2\ijUj(r—vzr) (5.20) 

commutes with cr3. I t will cause shifts in the levels 
Em,8 and relaxation between different energy levels 
but will not cause relaxation to the lower potential 
branch. The shifts can be estimated within the harmonic 
approximation of the radial potential by diagonalizing 
the coefficients of the effective harmonic potential 
[obtained from Eqs. (4.11), (4.14), and (4.19)], 

VA=1 £ H?u?+\£l'2(r-r')2 

n T i—1 

+ Z ^inooi2 X) \ikUk(r—rf), (5.21) 

where rf is the exact potential minimum and ft' the 
small-amplitude radial frequency calculable from Eq. 
(4.14) (with the term \ YLi w/Xi«V2 included, in contrast 
to the definition of O0). 

From perturbation theory one finds for the corrected 
radial frequency 

0 2 = 0 , 2 + 0 , - 2 ( ( [ ^ 2 » « a ) i
2 ) ) ] 2 ) ) + • • •, (5.22) 

where we define for any function £* of i, a kind of mean 
value given by 

«&»=E<A<. afc. (5.23) 

In these equations A, X*w, and Q,'2 are themselves 
expandable in powers of oof/a)2. Thus, the criterion for 
rapid convergence of (5.22) is 

col«\o)\ = (A2/h\m\)l/\ (5.24) 

We note, however, that the energy levels calculated 
from the frequency Or must be corrected by adding to 
them that part of the ground-state field energy which 
depends on \m\, since ^ depends on \m\. In a more 
exact treatment which avoided the harmonic approxi­
mation of the radial potential, this correction would 
depend weakly on s as well. I t is probably expandable 

file:///2foV
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in powers of c^/w but we make no attempt to verify 
this here. 

As far as the relaxation effect of term (5.20) is 
concerned we note that transitions in the oscillators 14k 
are required. In the case of single-phonon transitions 
conservation of energy requires 

AEm,sdbhfxk=0. (5.25) 

Now AEm,s is of the order (hA)21'6 [see Eq. (5.5)] for 
small \m\. Therefore, Eq. (5.25) cannot be satisfied 
for sufficiently small | m | if 

hfa«(M)2^ (5.26) 

and higher order processes are required. (By fa we mean 
a typical value of /**.) Since fa is of the same order as 
ibi this condition is equivalent to (5.24). 

Finally, we consider the level broadening due to the 
term 

n n—1 

— CTlR L Z hin^XikVkj (5.27) 

which causes relaxation to the lower branch of the 
potential via the operator <n. Extending the application 
of formula (5.16) to allow for the simultaneous emission 
of one vjc type of phonon as well as the plane wave 
exp(iKr) we find a contribution to ftW smaller than 
Eq. (5.19) by a factor of order 

lhfa/{M/\m\yi'J. (5.28) 

Thus, we conclude, in summary, that the inequality 
(5.26) is a condition for convergence of our procedure 
and of the existence of some quasistationary states on 
the upper branch of the potential. As long as this 
inequality is satisfied there will exist some states for 
which the level widths are less than their separations. 

The crucial quantity governing the scale of the levels 
is the energy parameter 

€E=(M)2'3 (5.29) 

appearing in Eq. (5.5) for the energy levels and others. 
A convenient estimation formula for e may be obtained 
by first denning the static stabilization energy Es of the 
system, 

£ . 3 _ t f m i n , (5.30) 

where Hmm is the classical ground-state energy of 
Eq. (3.2); 

ffmin=-JE^M-2. (5.31) 

We find the order-of-magnitude relation 

e6~2(hwk)
2Es, (5.32) 

which is exact if there is only one frequency a>&. The 
quantity Es has been investigated by Opik and Pryce.4 

They estimate that £ s « 3 0 0 0 cm - 1 and j&a>fc«350 cm"1 

for the octahedral complex Cu2+ • 6H20 so that, for this 
case, e^900 cm - 1 and e/foihk'^'2.6. Thus, the condition 
(5.26) is barely satisfied, even though the complex 
assumed should be nearly the most favorable case 
possible with cations of the first transition series. 

From these estimates it appears that the quasi-
stationary states on the upper potential branch may 
exist in appropriate molecules or crystals. I t also 
appears likely that our relations (5.5) and (5.19) will 
not be adequate for a quantitative description of such 
states except in very extreme cases, and that develop­
ment of corrections will be necessary along the lines 
indicated. Preliminary to working out the perturbation 
corrections discussed, it would be useful to start with 
the exact integrals of the radial Hamiltonian (5.1) 
which is grossly anharmonic for small \m\. 

Since the frequencies involved are in the optical 
range, optical spectroscopy is the most likely means of 
experimental verification, though the question of the 
nature of observations expected is beyond the scope 
of the present paper. 
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